试题 试卷
题型:综合题 题类:常考题 难易度:普通
2016-2017学年浙江省杭州市大江东区七年级下学期期中数学试卷
小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:a2+2ab+b2=(a+b)2 , 验证了完全平方公式;即:多项式 a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式 a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个整式的积.问题解决:(1)请你依照小刚的方法,利用拼图写出恒等式a2+4ab+3b2 . (画图说明,并写出其结果)(2)试猜想面积是2a2+5ab+3b2的矩形,其长与宽分别是多少?(画图说明,并写出其结果)
根据如图图形.
如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )
如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( )
试题篮