试题 试卷
题型:综合题 题类:真题 难易度:普通
2012年广西百色市中考数学试卷
如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
连接BE,求h为何值时,△BDE的面积最大;
如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE∥BC,DE∥AB.
如图,已知抛物线y=x2+bx+c与直线y=﹣x+3交于A、B两点,点A 在y轴上,点B在x轴上,抛物线与x轴的另一交点为C,点P在点B右边的抛物线上,PM⊥x轴交直线AB于M.
(1)求抛物线解析式.
(2)当PM=2BC时,求M的坐标.
(3)点P运动过程中,△APM能否为等腰三角形?若能,求点P的坐标,若不能说明理由.
试题篮