阅读下列材料并解决有关问题:【材料一】我们知道
, 现在我们可以用这一个结论来化简含x有绝对值的代数式,
如化简代数式
时可令
和
, 分别求得
,
(称
与2分别为
与
的零点值),在有理数范围内,零点值
和
可将全体有理数分成不重复且不遗漏的如下3种情况:
(1)当
时,原式
;
(2)当
时,原式
;
(3)当
时,原式
.
综上讨论,原式=![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmfenced+open%3D%22%7B%22+close%3D%22%22%3E%3Cmrow%3E%3Cmtable%3E%3Cmtr%3E%3Cmtd%3E%3Cmrow%3E%3Cmtable%3E%3Cmtr%3E%3Cmtd%3E%3Cmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3Cmtr%3E%3Cmtd%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%E2%89%A4%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3C%2Fmtable%3E%3C%2Fmrow%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3Cmtr%3E%3Cmtd%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%89%A5%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3C%2Fmtable%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
【材料二】
表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;
可以看作
, 表示
和
的差的绝对值,也可理解为5与
两数在数轴上所对应的两点之间的距离.
通过以上阅读,请你解决以下问题:
(1)求出
和
的零点值;
(2)化简代数式
;
(3)对于任意有理数x,
是否有最小值?如果有,写出最小值;如果没有,说明理由.