试题 试卷
题型:综合题 题类:常考题 难易度:普通
2015-2016学年浙江省杭州市萧山区戴村片七年级下学期期中数学试卷
方法1:;方法2:.
2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽《勾股圆方图》,它是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,如图,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为( )
附加题:课本中多项式与多项式相乘是利用平面几何图形的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2的面积来表示.
(1)请写出图3图形的面积表示的代数恒等式;
(2)试画出一个几何图形,使它的面积能表示(a+b)(a+3b)=a2+4ab+3b2 .
通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )
从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证的公式为{#blank#}1{#/blank#}
试题篮