试题 试卷
题型:证明题 题类:常考题 难易度:普通
2015-2016学年浙江省杭州市朝晖中学八年级下学期期中数学试卷
如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F , 连结BD交CE于点G , 连结BE. 下列结论中:① CE=BD; ② △ADC是等腰直角三角形;③ ∠ADB=∠AEB; ④ CD·AE=EF·CG;一定正确的结论有( )
如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.
如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交 于点D,过点D作⊙O的切线,交BA的延长线于点E.
【问题呈现】
小明在数学兴趣小组活动时遇到一个几何问题:如图,在等边△ABC中,AB=3,点M、N分别在边AC、BC上,且AM=CN,试探究线段MN长度的最小值.
【问题分析】
小明通过构造平行四边形,将双动点问题转化为单动点问题,再通过定角发现这个动点的运动路径,进而解决上述几何问题.
【问题解决】
如图②,过点C、M分别作MN、BC的平行线,并交于点P,作射线AP.
在【问题呈现】的条件下,完成下列问题:
试题篮