试题 试卷
题型:单选题 题类:常考题 难易度:普通
2015-2016学年广东省深圳市龙岗区九年级上学期期末数学试卷
如图①,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=-x-与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE、⊙M的半径r、CH的长;(2)如图②,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图③,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由.
如图1,圆的概念:在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆.就是说,到某个定点等于定长的所有点在同一个圆上,圆心在P(a,b),半径为r的圆的方程可以写为:(x﹣a)2+(y﹣b)2=r2 , 如:圆心在P(2,﹣1),半径为5的圆方程为:(x﹣2)2+(y+1)2=25
试题篮