试题 试卷
题型:解答题 题类:常考题 难易度:普通
(1)亮亮同学把3张正面都朝上的扑克牌每次都翻转2张,改变它们的朝向.他发现无论经过多少次这样的操作都不能使3张扑克牌的正面全部朝下.他的结论对吗?
(2)把4张正面都朝上的扑克牌每次都翻转2张,改变它们朝向,经过若干次操作,能否使4张扑克牌的正面都朝下呢?
(3)把4张正面都朝上的扑克牌每次都翻转3张,改变它们朝向,经过若干次操作,能否使4张扑克牌的正面都朝下呢?若能,至少要经过几次这样的操作?若不能,请说明理由.
甲说:“第二组得第一,第四组得第三”;
乙说:“第一组得第四,第三组得第二”;
丙说:“第三组得第三,第四组得第一”;
赛后得知,三人各猜对一半,则冠军是( )
如图是一个风景区,A,B,C,D,E,F是这一风景区内的五个主要景点,现观光者聚于A点.假若你是导游,要带领游客欣赏这五个景点后再回到A点,但又不想多走“冤枉路”(不能走重复的路线和经过同一个景点),你认为可选择行走路线有( )种.
的直线分别交AB , CD于点E , F , 连接DE , BF , 则四边形DEBF也是平行四边形.
她的证明思路是:利用平行四边形的性质得三角形全等,再利用平行四边形的判定定理,从而使问题得以解决.请根据小静的思路将下面证明过程补充完整.
证明:∵O为BD的中点,
∴ ① .
∵四边形ABCD是平行四边形,∴ ② , ∴∠BEO=∠DFO . 在△BOE和△DOF中,∴△BOE≌△DOF(A.A.S.).∴ ④ . 又∵OB=OD , ∴四边形DEBF是平行四边形( ⑤ ).
试题篮