试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图,平行四边形ABCD⊥平面CDE,AD=DC=DE=4,∠ADC=60°,AD⊥DE
(Ⅰ)求证:DE⊥平面ABCD;
(Ⅱ)求二面角C﹣AE﹣D的余弦值的大小.
(Ⅰ)证明:CD⊥平面PAD;
(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求直线PA与平面PCE所成角的正弦值.
(Ⅰ)证明:BC⊥平面PBD;
(Ⅱ)若二面角P﹣BC﹣D为 ,求AP与平面PBC所成角的正弦值.
(I)求证:CD⊥平面PAD;
(II)求二面角F-AE-P的余弦值;
(III)设点G在PB上,且 .判断直线AG是否在平面AEF内,说明理由。
试题篮