试题 试卷
题型:证明题 题类:常考题 难易度:普通
如图,圆O是三角形ABC的内切圆,求证:AB+CF=AC+BF.
如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒得速度从A点出发,沿AC向C移动,同时,动点Q以1米/秒得速度从C点出发,沿CB向B移动。当其中有一点到达终点时,他们都停止移动,设移动的时间为t秒。 (1)求△CPQ的面积S(平方米)关于时间t(秒)的函数关系式; (2)在P、Q移动的过程中,当△CPQ为等腰三角形时,求出t的值; (3)以P为圆心,PA为半径的圆与以Q为圆心,QC为半径的圆相切时,求出t的值。
如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长{#blank#}1{#/blank#} .
已知:AB是⊙O的直径,AD、BC是⊙O的切线,P是⊙O上一动点,若AD=5,AB=4,BC=8,则△PCD的面积的最小值是( )
试题篮