试题 试卷
题型:证明题 题类:常考题 难易度:普通
点O是三角形ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC中点D、E、F、G,依次连接起来,设DEFG能构成四边形.
(1)如图,当点O在△ABC内时,求证:四边形DEFG是平行四边形;
(2)当点O在△ABC外时,(1)的结论是否成立?(画出图形,指出结论,不需说明理由;)
(3)若四边形DEFG是菱形,则点O的位置应满足什么条件?试说明理由.
如图,将一张矩形纸片ABCD进行折叠,具体操作如下:第一步:先对折,使AD与BC重合,得到折痕MN,展开;第二步:再折叠一次,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BO,同时,得到线段BA′,OA′,展开,如图①;第三步:再沿OA′所在的直线折叠,点B落在AD上的点B′处,得到折痕OF,同时得到线段B′F,展开,如图②.
试题篮