试题 试卷
题型:综合题 题类:常考题 难易度:普通
浙江省杭州市萧山区城区片六校2020届九年级上学期数学12月月考试卷
如图,在等腰直角三角形ABC中,点O是斜边AC的中点,点P为斜边AC上的点,点D为直角边BC上的点,且PB=PD,DE⊥AC于E,BO与PD相交于M.
(1)请说明BO=PE的理由;
(2)若CE=x,AC=8,△ABP的面积是y,请写出y与x的函数关系式(不考虑x的取值范围),并画出这个函数的完整图象;
(3)在(2)的条件下,函数图象与x轴的交点是D,与y轴的交点是A点,平面直角坐标系原点是O点,请画出∠OAB,使射线AB交x轴于B点,使射线AD平分∠OAB,若⊙O′经过点A、点D,且圆心O′点在AB上,请说明“OB为⊙O′的切线”的理由.
平面内不在同一条直线上的三点确定一个面,那么平面内的四点(任意三点均不在同一直线上),能否在同一个面上呢?
初步思考
设不在同一条直线上的三点A、B、C确定的圆为⊙O.
木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:
方案一:直接锯一个半径最大的圆;
方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;
方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;
方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.
试题篮