试题

试题 试卷

logo

题型:综合题 题类:常考题 难易度:困难

江苏省东台市联谊校2020届九年级上学期数学10月月考试卷

问题背景:

如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.

小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= CD,从而得出结论:AC+BC= CD.

简单应用:

 

(1)、在图①中,若AC=2,BC=4,则CD=.
(2)、如图③,AB是⊙O的直径,点C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的长.拓展规律:
(3)、如图4,△ABC中,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= AC,CE=CA,且点E在直线AC的左侧时,点Q为AE的中点,则线段PQ与AC的数量关系是.
返回首页

试题篮