试题

试题 试卷

logo

题型:综合题 题类:常考题 难易度:普通

河南省郑州市外国语中学2019-2020学年八年级上学期数学开学试卷

   
(1)、如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME.

正方形ABCD中,∠B=∠BCD=90°,AB=BC.

∴ ∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.  

(下面请你完成余下的证明过程)

(2)、若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

返回首页

试题篮