试题 试卷
题型:解答题 题类:常考题 难易度:普通
广西南宁市2018-2019学年高二下学期理数“4N”高中联合体期末考试试卷
在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1
与B1D1交点,已知AA1=AB=1,∠BAD=60°.
(Ⅰ)求证:A1C1⊥平面B1BDD1;
(Ⅱ)求证:AO∥平面BC1D;
(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1 , 说明满足条件的点M的轨迹,并求OM的最小值.
在正三棱柱ABC﹣A1B1C1中,AB=2,AA1=3,点D为BC的中点;
(Ⅰ)求证:A1B∥平面AC1D;
(Ⅱ)若点E为A1C上的点,且满足 =m (m∈R),若二面角E﹣AD﹣C的余弦值为 ,求实数m的值.
(Ⅰ)求证:A1M∥平面AB1D;
(Ⅱ)求证:BN⊥平面A1MC.
试题篮