试题
试题
试卷
登录
注册
当前位置:
首页
题型:综合题
题类:模拟题
难易度:困难
湖北省武汉市2019届九年级数学复习调研创优卷(二)
如图,在
中,
,
,点
为
延长线上一点,连接
,过
分别作
,垂足为
,交
于点
,作
,垂足为
,交
于点
.
(1)、
求证:
;
(2)、
如图,点
在
的延长线上,且
,连接
并延长交
于点
,求证:
;
(3)、
在(2)的条件下,当
时,请直接写出
的值为
.
举一反三
如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.
在《九章算术》中有求三角形面积公式“底乘高的一半”,但是在实际丈量土地面积时,量出高并非易事,所以古人想到了能否利用三角形的三条边长来求面积.我国南宋著名的数学家秦九韶(
年—
年)提出了“三斜求积术”,阐述了利用三角形三边长求三角形面积方法,简称秦九韶公式.在海伦(公元
年左右,生平不详)的著作《测地术》中也记录了利用三角形三边长求三角形面积的方法,相传这个公式最早是由古希腊数学家阿基米德(公元前
年—公元前
年)得出的,故我国称这个公式为海伦一秦九韶公式.它的表达为:三角形三边长分别为
、
、
,则三角形的面积
(公式里的
为半周长即周长的一半).
请利用海伦一秦九韶公式解决以下问题:
如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG
2
=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是( )
如图,点E、C在BF上,BE=CF,AB=DE,∠B=∠DEF.求证:AC=DF,AC∥DF.
如图,直线
与
轴、
轴分别相交于点B、C,经过B、C两点的抛物线
与
轴的另一个交点为A,顶点为P,且对称轴为直线
。点G是抛物线
位于直线
下方的任意一点,连接PB、GB、GC、AC.
如图,AB是⊙O的直径,DC为⊙O的切线,DE⊥AB,垂足为点E,交⊙O于点F,弦AC交DE于点P,连接CF.
返回首页
相关试卷
浙江省宁波市镇海区仁爱中学2024-2025学年上学期八年级数学期末试卷
贵州省安顺市开发区2024-2025学年八年级上学期期末考试数学试题
山东省潍坊市2024-2025学年七年级上学期期末数学试卷
广西壮族自治区梧州市2024-2025学年八年级上学期第一次月考考试数学试题
山东省青岛市市北区2024—2025学年上学期七年级数学期末试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册