试题 试卷
题型:综合题 题类:常考题 难易度:普通
重庆市北碚区2018-2019学年八年级上学期数学期末考试试卷
(方法1) = ;
(方法2) = ;
我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图1可以用来解释a2﹣b2=(a+b)(a﹣b).那么通过图2面积的计算,验证了一个恒等式,此等式是{#blank#}1{#/blank#}
.
在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式( )
通过整式运算一章的学习,我们发现要验证一个结论的正确性可以有两种方法:
例如:要验证结论
方法1:几何图形验证:如下图,我们可以将一个边长为(a+b)的正方形上裁去一个边长为(a-b)的小正方形则剩余图形的面积为4ab,验证该结论正确。
方法2:代数法验证:等式左边= ,
所以,左边=右边,结论成立。
观察下列各式:
小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2 , 对于方案一,小明是这样验证的:
a2+ab+ab+b2=a2+2ab+b2=(a+b)2
请你根据方案二、方案三,写出公式的验证过程.
方案二:
方案三:
试题篮