试题 试卷
题型:单选题 题类:常考题 难易度:普通
如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点. 求证:
(1)PA∥平面BDE;
(2)BD⊥平面PAC.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)若二面角E﹣BD﹣P大于60°,求四棱锥P﹣ABCD体积的取值范围.
如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(Ⅰ)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(Ⅱ)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.
①若 ,则 ②若 ,则
③若 ,则 ④若 ,则
其中正确命题的序号是( )
(I)求证: 为直角三角形;
(II)试确定 的值,使得二面角 的平面角余弦值为 .
试题篮