修改时间:2021-05-17 浏览次数:199 类型:三轮冲刺
如图1,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H,容易证明四边形PEDH和四边形PFBG是面积相等的矩形,分别连结EG,FH.
①根据矩形PEDH和矩形PFBG面积相等的关系,那么PE·PH= ▲ .
②求证:EG∥FH.
如图2,已知直线 分别与x轴,y轴交于D,C两点,
与双曲线 交于A,B两点. 求证:AC=BD.
如图3,反比例函数 (x>0)的图象与矩形ABCO的边BC交于点D,与边AB交于点E, 直线DE与x轴,y轴分别交于点F,G . 若矩形ABCO的面积为10,△ODG与△ODF的面积比为3:5,则k=.
如图1,四边形ABCD中,F为CD的中点,∠ADB=90°,E是AB边上一点,满足DE=AE,试判断EF是否为四边形ABCD的准中位线,并说明理由。
如图2,△ABC中,∠ACB=90°,AC=6,BC=8,动点E以每秒1个单位的速度,从点A出发向点C运动,动点F以每秒6个单位的速度,从点C出发沿射线CB运动,当点E运动至点C时,两点同时停止运动。D为线段AB上任意一点,连接并延长CD,射线CD与点A,B,E,F构成的四边形的两边分别相交于点M,N,设运动时间为t。问t为何值时,MN为点A,B,E,F构成的四边形的准中位线。
如图3,EF为四边形ABCD的准中位线,AB=CD,延长FE分别与BA,CD的延长线交于点M,N,请找出图中与∠M相等的角并证明。
试题篮