宁夏银川外国语实验学校2017年中考数学一模试卷

修改时间:2024-07-12 浏览次数:1674 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题

  • 1. 下列运算正确的是(   )
    A . a6÷a2=a3 B . a5﹣a2=a3 C . (3a32=6a9 D . 2(a3b)2﹣3(a3b)2=﹣a6b2
  • 2. 太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辐射能功率为(   )千瓦.(用科学记数法表示,保留2个有效数字)
    A . 1.9×1014 B . 2×1014 C . 76×1015 D . 7.6×1014
  • 3. 若关于x、y的二元一次方程组 的解满足x+y>1,则实数k的取值范围是(   )
    A . k<0 B . k<﹣1 C . k<﹣2 D . k<﹣3
  • 4. 随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是(   )


    A . 20、20 B . 30、20 C . 30、30 D . 20、30
  • 5. 如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=(   )


    A . 100° B . 72° C . 64° D . 36°
  • 6. 如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为(   )


    A . 90° B . 120° C . 135° D . 150°
  • 7. 函数y=k(x﹣k)与y=kx2 , y= (k≠0),在同一坐标系上的图象正确的是(   )
    A . B . C . D .

二、填空题

  • 8. 因式分解:﹣2x2y+12xy﹣18y=
  • 9. 函数y= 的自变量x的取值范围是
  • 10. 在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是 , 则黄球的个数为  个.

  • 11. 把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为
  • 12. 兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为

  • 13. 如图,在平行四边形ABCD中,∠BAD=110°,将四边形BCD绕点A逆时针旋转到平行四边形AB′C′D′的位置,旋转角α(0°<α<70°),若C′D′恰好经过点D,则α的度数为


  • 14. 如图,矩形ABCD中,AD=4,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是


  • 15. 如图,半圆的直径AB,点C在半圆上,已知半径为1,△ABC的周长为 +2,则阴影部分的面积为


三、解答题

  • 16. 解不等式组: 并把解集在数轴上表示出来.
  • 17. 先化简 ÷(a﹣2+ ),然后从﹣2,﹣1,1,2四个数中选择一个合适的数作为a的值代入求值.
  • 18. 每个小方格是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系的位置如图所示.

    (1) 以O为位似中心,在第一象限内将菱形OABC放大为原来的2倍得到菱形OA1B1C1 , 请画出菱形OA1B1C1 , 并直接写出点B1的坐标;
    (2) 将菱形OABC绕原点O顺时针旋转90°菱形OA2B2C2 , 请画出菱形OA2B2C2 , 并求出点B旋转到点B2的路径长.
  • 19. 某中学为了科学建设“学生健康成长工程”,随机抽取了部分学生家庭对其家长进行了主题“周末孩子在家您关心了吗?”的调查问卷,将收回的调查问卷进行了分析整理,得到了如下的样本统计图表和扇形统计图:


    代号

    情况分类

    家庭数

    A

    带孩子玩且关心其作业完成情况

    8

    B

    只关心其作业完成情况

    m

    C

    只带孩子玩

    4

    D

    既不带孩子玩也不关心其作业完成情况

    n

    (1) 求m,n的值;
    (2) 该校学生家庭总数为500,学校决定按比例在B、C、D类家庭中抽取家长组成培训班,其比例为B类20%,C、D类各取60%,请你估计该培训班的家庭数;
    (3) 若在C类家庭中只有一个是城镇家庭,其余是农村家庭,请用列举法求出C类中随机抽出2个家庭进行深度家访,其中有一个是城镇家庭的概率.
  • 20. 如图,在▱ABCD中,E,F分别为边AB,CD的中点,连接DE,BF,BD.

    (1) 求证:△ADE≌△CBF.
    (2) 若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.
  • 21. 某工厂对零件进行检测,引进了检测机器.已知一台检测机的工作效率相当于一名检测员的20倍.若用这台检测机检测900个零件要比15名检测员检测这些零件少3小时.
    (1) 求一台零件检测机每小时检测零件多少个?
    (2) 现有一项零件检测任务,要求不超过7小时检测完成3450个零件.该厂调配了2台检测机和30名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?

四、解答题

  • 22. 如图,点C是以AB为直径的圆O上一点,直线AC与过B点的切线相交于D,点E是BD的中点,直线CE交直线AB于点F.


    (1) 求证:CF是⊙O的切线;
    (2) 若ED=3,EF=5,求⊙O的半径.
  • 23. 如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.


    (1) 求抛物线的解析式和顶点坐标;
    (2) 当0<x<3时,求y的取值范围;
    (3) 点P为抛物线上一点,若SPAB=10,求出此时点P的坐标.
  • 24. 心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):


    (1) 求出线段AB,曲线CD的解析式,并写出自变量的取值范围;
    (2) 开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?
    (3) 一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
  • 25. 已知△ABC为边长为6的等边三角形,D,E分别在边BC,AC上,且CD=CE=x,连接DE并延长至点F,使EF=AE,连接AF,CF.


    (1) 求证:△AEF为等边三角形;
    (2) 求证:四边形ABDF是平行四边形;
    (3) 记△CEF的面积为S,

    ①求S与x的函数关系式;

    ②当S有最大值时,判断CF与BC的位置关系,并说明理由.

试题篮