浙江省湖州市第四中学教育集团2021届九年级上学期数学10月月考试卷

修改时间:2024-07-31 浏览次数:135 类型:月考试卷 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题

  • 1. 下列各式中,y是x的二次函数的是( )
    A . y=3x-1 B . y= C . y=3x2+x-1 D . y=2x2
  • 2. 下列说法正确的是(  )
    A . “经过有交通信号的路口遇到红灯”是必然事件         B . 已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次 C . 投掷一枚硬币正面朝上是随机事件 D . 明天太阳从东方升起是随机事件
  • 3. 抛物线y=(x﹣3)2﹣5的顶点坐标是(   )
    A . (3,5) B . (﹣3,5) C . (3,﹣5) D . (﹣3,﹣5)
  • 4. 关于抛物线yx2﹣6x+9,下列说法错误的是(  )
    A . 开口向上 B . 顶点在x轴上       C . 对称轴是x=3 D . x>3时,yx增大而减小
  • 5. 如图,直线y1mx+n和抛物线y2ax2+bx+c交于A(﹣3,1)和B (1,2)两点,使得y1y2x的取值范围是(  )

    A . x>1 B . x>﹣3 C . ﹣3<x<1 D . x>1或x<﹣3
  • 6. 在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1个球,摸到黄球的概率是(  )
    A . B . C . D .
  • 7. 如图,抛物线yx2+2x﹣1与x轴相交于AB两点,与y轴交于点C , 点D在抛物线上,且CDAB , 则线段CD的长为(  )

    A . 2 B . 3 C . 4 D .
  • 8. 已知二次函数yax2+bx+c自变量x的部分取值和对应函数值y如表:

    x

    ﹣2

    ﹣1

    0

    1

    2

    3

    y

    8

    3

    0

    ﹣1

    0

    3

    则在实数范围内能使得y﹣3>0成立的x取值范围是(  )

    A . x>3 B . x<﹣1 C . ﹣1<x<3 D . x<﹣1或x>3
  • 9. 在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为(   )
    A . S= B . S= C . S= D . S=
  • 10. 如图,抛物线y=-x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.

    ①抛物线y=-x2+2x+m+1与直线y=m+2有且只有一个交点;

    ②若点M(-2,y1)、点N( ,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3

    ③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=-(x+1)2+m;

    ④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为 .

    其中正确判断有(   )

    A . ①②③④ B . ②③④ C . ①③④ D . ①③

二、填空题

  • 11. 当x=0时,函数 的值为
  • 12. 一个不透明的袋子中装有若干个红球和6个黄球,它们除颜色外都相同,从中随机摸出一个球,记下颜色后放回,通过大量反复实验发现,摸到黄球的频率约为0.3,由此推测从这个袋中摸到红球的概率约为.
  • 13. 二次函数yax2+bx+c(0≤x≤3)的图象如图所示,则y的取值范围是

     

  • 14. 斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线国案,下列四张分别画有斐波那契螺旋线图案的卡片,它们的背面完全相同.现将它们背面朝上,从中任取一张,卡片上所画图案恰好是中心对称图形的概率是

  • 15.

    如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1 , 则下列结论正确的是 .(写出所有正确结论的序号)

    ①b>0

    ②a﹣b+c<0

    ③阴影部分的面积为4

    ④若c=﹣1,则b2=4a.

  • 16. 在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若 ,则称点Q为点P的“可控变点”.

    例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).

    (1) 若点(﹣1,﹣2)是一次函数 图象上点M的“可控变点”,则点M的坐标为
    (2) 若点P在函数 )的图象上,其“可控变点”Q的纵坐标y′的取值范围是 ,则实数a的取值范围是
  • 17. 如图,将小球沿某方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2

    (1) 求小球飞出1s时的飞行高度;
    (2) 求小球从飞出到落地要用的时间.
  • 18. 已知二次函数yax2+bx﹣3的图象经过点(1,﹣4)和(﹣1,0).
    (1) 求这个二次函数的表达式;
    (2) x在什么范围内,yx增大而减小?该函数有最大值还是有最小值?求出这个最值.
  • 19. 新定义:[a,b,c]为二次函数y=ax2+bx+e(a≠0,a,b,c为实数)的“图象数”,如:y=-x2+2x+3的“图象数”为[-1,2,3]
    (1) 二次函数y= x2-x-1的“图象数”为
    (2) 若图象数”是[m,m+1,m+1]的二次函数的图象与x轴只有一个交点,求m的值.
  • 20. 某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.

    (1) 不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?
    (2) 若墙体长度为20米,问长方形面积最大是多少?
  • 21. 如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面

    的最大距离是5m.

    (1) 经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;
    (2) 因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.
  • 22. 假期,六盘水市教育局组织部分教师分别到A.B.C.D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:

    (1) 若去C地的车票占全部车票的30%,则去C地的车票数量是张,补全统计图.
    (2) 若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?
    (3) 若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.
  • 23. 有一家苗圃计划种植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图1所示的二次函数y1ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图2所示的正比例函数y2kx

    (1) 请分别直接写出利润y1(万元)与利润y2(万元)关于投资成本x(万元)的函数关系式;
    (2) 若这家苗圃投资4万元种植桃树,投资6万元种植柏树,则可获得的总利润是多少万元?
    (3) 若这家苗圃种植桃树和柏树投入总成本20万元,且桃树的投资成本不低于2万元,且不高于12万元,则苗圃最少能获得多少总利润?最多可获得多少总利润?
  • 24. 如图,函数y=-x2+bx+c的图象经过点Am , 0),B(0,n)两点,mn分别是方程x2-2x-3=0的两个实数根,且mn
    (1) 求mn的值以及函数的解析式;
    (2) 设抛物线y=-x2+bx+cx轴的另一交点为点C , 顶点为点D , 连结BDBCCD , 求△BDC面积;

    (3) 对于(1)中所求的函数y=-x2+bx+c
    ①当0≤x≤3时,求函数y的最大值和最小值;
    ②设函数y在txt+1内的最大值为p , 最小值为q , 若p-q=3,求t的值.

试题篮