广东省江门市新会区2019-2020学年九年级上学期数学期末试卷

修改时间:2024-07-13 浏览次数:243 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 掷一枚质地均匀的骰子,骰子停止后,在下列四个选项中,可能性最大的是(    )
    A . 点数小于4 B . 点数大于4 C . 点数大于5 D . 点数小于5
  • 2. 关于x的方程x2﹣mx+6=0有一根是﹣3,那么这个方程的另一个根是(    )
    A . ﹣5 B . 5 C . ﹣2 D . 2
  • 3. 如果反比例函数y= 的图象经过点(﹣5,3),则k=(    )
    A . 15 B . ﹣15 C . 16 D . ﹣16
  • 4. 如图,把一个直角三角板△ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD,则∠BDC的度数为(    )

    A . 15° B . 20° C . 25° D . 30°
  • 5. 为了解圭峰会城九年级女生身高情况,随机抽取了圭峰会城九年级100名女生,她们的身高x(cm)统计如下:

    组别(cm)

    x<150

    150≤x<155

    155≤x<160

    160≤x<165

    x≥165

    频数

    2

    23

    52

    18

    5

    根据以上结果,随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是(    )

    A . 0.25 B . 0.52 C . 0.70 D . 0.75
  • 6. 如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是(   )

    A . 35° B . 55° C . 65° D . 70°
  • 7. 若一元二次方程x2﹣4x﹣4m=0有两个不等的实数根,则反比例函数y= 的图象所在的象限是(    )
    A . 第一、二象限 B . 第一、三象限 C . 第二、四象限 D . 第三、四象限
  • 8. 已知点P(x,y)在第二象限,|x|=6,|y|=8,则点P关于原点的对称点的坐标为(    )
    A . (6,8) B . (﹣6,8) C . (﹣6,﹣8) D . (6,﹣8)
  • 9. 在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是(    )
    A . B . C . D .
  • 10.  已知,如图,点C、D在⊙O上,直径AB=6 ,弦ACBD相交于点E . 若CE=BC , 则阴影部分面积为(   ) 

    A . B . C . D .

二、填空题

  • 11. 经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是
  • 12. 反比例函数y=﹣ 的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),则
  • 13. 已知一元二次方程ax2+bx+c=0的两根为﹣5和3,则二次函数y=ax2+bx+c图象对称轴是直线
  • 14. 将含有 30°角的直角三角板 OAB 如图放置在平面直角坐标系中,OB 在 x轴上,若 OA=2,将三角板绕原点 O 顺时针旋转 75°,则点 A 的对应点 A′ 的坐标为

  • 15. 如图,一次函数 的图象在第一象限与反比例函数 的图象相交于AB两点,当 时,x的取值范围是 ,则

  • 16. 定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b,如:max{3,1}=3,max{﹣3,2}=2,则方程max{x,﹣x}=x2﹣6的解是

三、解答题

  • 17. 如图,四边形ABCD是⊙O的内接四边形,∠AOC=116°,则∠ADC的角度是

  • 18. 解方程:3x(2x+1)=4x+2.
  • 19. 已知点M(2,a)在反比例函数y= (k≠0)的图象上,点M关于原点中心对称的点N在一次函数y=﹣2x+8的图象上,求此反比例函数的解析式.
  • 20. 如图,已知△ABC与△A′B′C′关于点O成中心对称,点A的对称点为点A′,请你用尺规作图的方法,找出对称中心O,并作出△A′B′C′.(要求:尺规作图,保留作图痕迹,不写作法).

  • 21. 网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同.
    (1) 求该快递公司投递的快递件数的月平均增长率;
    (2) 如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?
  • 22. 在一个不透明的盒子里,装有四个分别标有数字2、3、4、6的乒乓球,它们的形状、大小、颜色、质地完全相同,耀华同学先从盒子里随机取出一个小球,记为数字x,不放回,再由洁玲同学随机取出另一个小球,记为数字y,
    (1) 用树状图或列表法表示出坐标(x,y)的所有可能出现的结果;
    (2) 求取出的坐标(x,y)对应的点落在反比例函数y= 图象上的概率.
  • 23. 一艘运沙船装载着5000m3沙子,到达目的地后开始卸沙,设平均卸沙速度为v(单位:m3/小时),卸沙所需的时间为t(单位:小时).
    (1) 求v关于t的函数表达式,并用列表描点法画出函数的图象;
    (2) 若要求在20小时至25小时内(含20小时和25小时)卸完全部沙子,求卸沙的速度范围.
  • 24. 如图,已知AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,∠BCP=∠A.

    (1) 求证:直线PC是⊙O的切线;
    (2) 若CA=CP,⊙O的半径为2,求CP的长.
  • 25. 如图,二次函数y=x2+bx+c的图象与x轴相交于点A、B两点,与y轴相交于点C(0,﹣3),抛物线的对称轴为直线x=1.

    (1) 求此二次函数的解析式;
    (2) 若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并证明你的结论.

试题篮