2015年广西玉林市、防城港市中考数学真题试卷

修改时间:2017-11-03 浏览次数:894 类型:中考真卷 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题(每小题3分,共36分,每小题给出的四个选项中只有一个是正确的)

  • 1. 的相反数是(  )

    A . B . C . -2 D . 2
  • 2. 计算:cos245°+sin245°=(  )

    A . B . 1 C . D .
  • 3. 下列运算中,正确的是(  )

    A . 3a+2b=5ab B . 2a3+3a2=5a5 C . 3a2b﹣3ba2=0 D . 5a2﹣4a2=1
  • 4. 下面角的图示中,能与30°角互补的是(  )

    A . B . C . D .
  • 5.

    如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是(  )

    A . 3 B . 4 C . 5 D . 6
  • 6. 如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是(  )

    A . AD=AE B . DB=EC C . ∠ADE=∠C D . DE=BC
  • 7.

    学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是(  )

    A . 2 B . 2.8 C . 3 D . 3.3
  • 8.

    如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是(  )


    A . AC=AB B . ∠C=∠BOD   C . ∠C=∠B D . ∠A=∠BOD
  • 9.

    如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是14,则DM等于(  )

    A . 1 B . 2 C . 3 D . 4
  • 10. 某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是(  )

    A . B . C . D .
  • 11.

    如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于(  )

    A . B . 2 C . 1.5 D .
  • 12.

    如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣ , m)(m>0),则有(  )

    A . a=b+2k B . a=b﹣2k C . k<b<0 D . a<k<0

二、填空题(共6小题,每小题3分,共18分)

三、解答题(共8小题,满分66分)

  • 20.

    解不等式组: , 并把解集在数轴上表示出来.

  • 21.

    根据图中尺规作图的痕迹,先判断得出结论:                  , 然后证明你的结论(不要求写已知、求证)


  • 22. 现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.

    (1) 求两次抽得相同花色的概率;

    (2) 当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)

  • 23.

    如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.

    (1) 求证:四边形BCDE是平行四边形;

    (2) 已知图中阴影部分面积为6π,求⊙O的半径r.

  • 24.

    某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.

    (1) 求y关于x的函数关系式(不要求写出x的取值范围);

    (2) 应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?

  • 25.

    如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.


    (1) 当△CDQ≌△CPQ时,求AQ的长;

    (2) 取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.

  • 26.

    已知:一次函数y=﹣2x+10的图象与反比例函数(k>0)的图象相交于A,B两点(A在B的右侧).


    (1) 当A(4,2)时,求反比例函数的解析式及B点的坐标;

    (2) 在1的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

    (3) 当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若 , 求△ABC的面积.

试题篮