湖北省襄阳市阳光学校2020年数学中考二模试卷

修改时间:2024-07-13 浏览次数:266 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 在﹣ ,0,﹣2,1这四个数中,最小的数是(    )
    A . B . 0 C . ﹣2 D . 1
  • 2. 下列运算中正确的是(    )
    A . (a23=a5 B . (2x+1)(2x﹣1)=2x2﹣1 C . a8•a2=a4 D . 6m3÷(﹣3m2)=﹣2m
  • 3. 下列函数中,自变量x的取值范围为x>1的是(   )
    A . B . C . D . y=(x﹣1)0
  • 4. 将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是(  )

    A . 15° B . 22.5° C . 30° D . 45°
  • 5. 下列说法正确的是(  )
    A . 一个游戏的中奖概率是 ,则做10次这样的游戏一定会中奖 B . 为了解全国中学生的心理健康情况,应该采用普查的方式 C . 一组数据6,8,7,8,8,9,10的众数和中位数都是8 D . 若甲组数据的方差 ,乙组数据的方差 ,则乙组数据比甲组数据稳定
  • 6.

    图中几何体的左视图是(  )

    A . B . C . D .
  • 7. 如图,⊙O是正五边形ABCDE的外接圆,点P是 的一点,则∠CPD的度数是(  )

    A . 30° B . 36° C . 45° D . 72°
  • 8. 如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为(   )

    A . 6 B . 8 C . 10 D . 12
  • 9. 如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是(    )

    A . B . C . D .
  • 10. 如图,函数 ( 是常数,且 )在同一平面直角坐标系的图象可能是( )
    A . B . C . D .

二、填空题

  • 11. 某物体质量为325000克,用科学记数法表示为克.
  • 12. 分式方程 的解为.
  • 13. 我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x步,那么根据题意列出的方程为.
  • 14. 一套书有上、中、下三册,将它们任意摆放到书架的同一层上,这三册书从左向右恰好成上、中、下顺序的概率为.
  • 15. 在△ABC中,AB=AC=5,sinB= ,⊙O过点B、C两点,且⊙O半径r= ,则OA的长为.
  • 16. 如图,点 C 为 Rt△ACB 与 Rt△DCE 的公共点,∠ACB=∠DCE=90°,连 接 AD、BE,过点 C 作 CF⊥AD 于点 F,延长 FC 交 BE 于点 G,若 AC=BC=25,CE=15, DC=20,则 的值为.

三、解答题

  • 17. 先化简,再求值: ,其中 .
  • 18. 为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种.为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种)并将调查结果绘制成如下不完整的统计图表:

    学生最喜欢的活动项目的人数统计表

    项目

    学生数(名)

    百分比(%)

    袋鼠跳

    45

    15

    夹球跑

    30

    c

    跳大绳

    75

    25

    绑腿跑

    b

    m

    拔河赛

    90

    30

    根据图表中提供的信息,解答下列问题:

    (1) a=,b=,c=
    (2) 请将条形统计图补充完整;
    (3) 根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑.
  • 19. 某商店经销一批小商品,每件商品的成本为8元.据市场分析,销售单价定为10元时,每天能售出200件;现采用提高商品售价,减少销售量的办法增加利润,若销售单价每涨1元,每天的销售量就减少20件.
    (1) 当销售单价为12元,每天可售出多少件?
    (2) 针对这种小商品的销售情况,该商店要保证每天盈利640元,同时又要使顾客得到实惠,那么销售单价应定为多少元?
  • 20. 如图,两座建筑物的水平距离 .从 点测得 点的仰角 为53° ,从 点测得 点的俯角 为37° ,求两座建筑物的高度(参考数据:

  • 21. 如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y= 的图象的两个交点.

    (1) 求一次函数和反比例函数的解析式;
    (2) 求△AOB的面积.
  • 22. 已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.

    (1) 求证:点D是AB的中点;
    (2) 判断DE与⊙O的位置关系,并证明你的结论;
    (3) 若⊙O的直径为10,tanB=3,求DE的长.
  • 23. 今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,某校数学教师编制了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:

    月用水量(吨)

    单价(元/吨)

    不大于10吨部分

    1.5

    大于10吨不大于m吨部分(20≤m≤50)

    2

    大于m吨部分

    3

    (1) 若某用户六月份用水量为18吨,求其应缴纳的水费;
    (2) 记该用户六月份用水量为 吨,缴纳水费为 元,试列出 的函数式;
    (3) 若该用户六月份用水量为40吨,缴纳水费 元的取值范围为 ,试求 的取值范围.

    各位同学,请你也认真做一做,相信聪明的你一定会顺利完成.

  • 24. 由特殊到一般、类比、转化是数学学习和研究中经常用到的思想方法.下面是对一道几何题进行变式探究的思路,请你运用上述思想方法完成探究任务.问题情境:在四边形ABCD中,AC是对角线,E为边BC上一点,连接AE.以E为旋转中心,将线段AE顺时针旋转,旋转角与∠B相等,得到线段EF,连接CF.

    (1) 特例分析:如图1,若四边形ABCD是正方形,求证:AC⊥CF;
    (2) 拓展分析一:如图2,若四边形ABCD是菱形,探究下列问题:

    ①当∠B=50°时,求∠ACF的度数;

    ②针对图2的条件,写出一般的结论(不必证明);

    (3) 拓展探究二:如图3,若四边形ABCD是矩形,且BC=k•AB(k>1).若前提条件不变,特例分析中得到的结论还成立吗?若成立,请证明;若不成立,修改题中的条件使结论成立(不必证明).
  • 25. 如图①,将抛物线 平移到顶点恰好落在直线 上,并设此时抛物线顶点的横坐标为 .

    (1) 求抛物线的解析式(用含 的代数式表示);
    (2) 如图②, 与抛物线交于 三点, 轴, .

    ①求 的面积(用含 的代数式表示);

    ②若 的面积为1,当 时, 的最大值为-3,求 的值.

试题篮