安徽省亳州市利辛县2018-2019学年九年级上学期数学期中考试试卷

修改时间:2024-07-13 浏览次数:317 类型:期中考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 下列四条线段能成比例线段的是(   )
    A . 1,1,2,3 B . 1,2,3,4 C . 2,2,3,3 D . 2,3,4,5
  • 2. 已知A(x1 , y1)和B(x2 , y2)是反比例函数y= 的上的两个点,若x2>x1>0,则(   )
    A . y2>y1>0 B . y1>y2>0 C . 0>y1>y2 D . 0>y2>y1
  • 3. 抛物线y=3(x﹣2)2+5的顶点坐标是(   )

    A . (﹣2,5) B . (﹣2,﹣5) C . (2,5) D . (2,﹣5)
  • 4. 下列各组中的四条线段成比例的是(   )
    A . 1cm、2cm、20cm、30cm B . 1cm、2cm、3cm、4cm C . 4cm、2cm、1cm、3cm D . 5cm、10cm、10cm、20cm
  • 5. 当k取任意实数时,抛物线y=﹣9(x﹣k)2﹣3k2的顶点所在的曲线的解析式是(   )
    A . y=3x2 B . y=9x2 C . y=﹣3x2 D . y=﹣9x2
  • 6. 如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2= (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是(   )

    A . ﹣3<x<2 B . x<﹣3或x>2 C . ﹣3<x<0或x>2 D . 0<x<2
  • 7. 如图,点F ABCD的边AD上的三等分点,BFAC于点E , 如果△AEF的面积为2,那么四边形CDFE的面积等于( )

    A . 18 B . 22 C . 24 D . 46
  • 8. 当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为(    )
    A . -1 B . 2 C . 0或2 D . -1或2
  • 9. 已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y= 在同一平面直角坐标系中的图象大致是(   )


    A . B . C . D .
  • 10. 已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是(   )

    A . B . C . D .

二、填空题

  • 11. 已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=
  • 12. 将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是
  • 13. 在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是

     

  • 14. 两个三角形相似,相似比是 ,如果小三角形的面积是9,那么大三角形的面积是.
  • 15. 已知线段abc满足 ,且 ,求 的值

三、解答题

  • 16. 用配方法求二次函数y=x2﹣10x+3的顶点坐标.
  • 17. 如图,某测量工作人员眼睛A与标杆顶端F、电视塔顶端E在同一直线上,已知此人眼睛距地面1.6米,标杆高为3.2米,且BC=1米,CD=5米,求电视塔的高ED.

  • 18. 反比例函数 的图象经过点A (2,-3) .
    (1) 求这个函数的解析式;
    (2) 请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.
  • 19. 由边长相等的小正方形组成的网格,以下各图中点A、B、C、D都在格点上.

    (1) 在图1中,PC:PB=
    (2) 利用网格和无刻度的直尺作图,保留痕迹,不写作法.

    ①如图2,在AB上找点P,使得AP:PB=1:3;

    ②如图3,在BC上找点P,使得△APB∽△DPC;

    ③如图4,在△ABC中内找一点P,连接PA、P

    B、PC,将△ABC分成面积相等的三部分.

  • 20. 已知抛物线y=x2﹣(m+1)x+m
    (1) 求证:抛物线与x轴一定有交点;
    (2) 若抛物线与x轴交于A(x1 , 0),B(x2 , 0)两点,x1<0<x2 , 且 ,求m的值.
  • 21. 如图,四边形OP1A1B1A1P2A2B2A2P3A3B3、……、An1PnAnBn都是正方形,对角线OA1A1A2A2A3、……、An1An都在y轴上(n≥2),点P1(x1y1),点P2(x2y2),……,点Pn(xnyn)在反比例函数y (x>0)的图象上,已知B1 (-1,1)。

    (1) 反比例函数解析式为
    (2) 求点P1和点P2的坐标;
    (3) 点Pn的坐标为()(用含n的式子表示),△PnBnO的面积为。(直接填答案)
  • 22. 某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
    (1) 若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
    (2) 当降价多少元时,每星期的利润最大?最大利润是多少?
  • 23. 如图

    (1) 如图1所示,在Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,点E在直角边BC上,若∠CDE=45°,求证:△ACD∽△BDE.
    (2) 如图2所示,在矩形ABCD中,AB=4cm,BC=10cm,点E在BC上,连接AE,过点E作EF⊥AE交CD(或CD的延长线)于点F.

    ①若BE:EC=1:9,求CF的长;

    ②若点F恰好与点D重合,请在备用图上画出图形,并求BE的长.

试题篮