云南省昆明市官渡区2018届数学中考二模试卷

修改时间:2024-07-13 浏览次数:434 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 如图是用五个相同的立方块搭成的几何体,其主视图是(   )

    A . B . C . D .
  • 2. 下列说法不正确的是(   )
    A . 某种彩票中奖的概率是 ,买1000张该种彩票一定会中奖 B . 了解一批电视机的使用寿命适合用抽样调查 C . 若甲组数据方差 =0.39,乙组数据方差 =0.27,则乙组数据比甲组数据稳定 D . 在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件
  • 3. 不等式组 的解集是(  )
    A . x≥2 B . ﹣1<x≤2 C . x≤2 D . ﹣1<x≤1
  • 4. 若正六边形的边长为6,则其外接圆半径为(   )
    A . 3 B . 3 C . 3 D . 6
  • 5. 下列计算正确的是(   )
    A .  =±4 B . 2a2÷a1=2a C . D . (﹣3)2=﹣
  • 6.

    为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意所列方程为( )

    A . 20x2=25 B . 20(1+x)=25 C . 20(1+x)2=25 D . 20(1+x)+20(1+x)2=25
  • 7. 若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为(    )

    A . 15π cm2 B . 24π cm2 C . 39π cm2 D . 48π cm2
  • 8. 如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可以用图象表示为( )

    A . (A) B . (B) C . (C) D . (D)

二、填空题

  • 9. 2018的倒数是
  • 10. 人体内某种细胞的直径为0.00000156m,0.00000156用科学记数法表示为
  • 11. 如图,在△ABC中,DE∥BC, ,则 =

  • 12. 一般地,当α,β为任意角时,cos(α+β)与cos(α﹣β)的值可以用下面的公式求得cos(α+β)=cosα•cosβ﹣sinα•sinβ;cos(α﹣β)=cosα•cosβ+sinα•sinβ.例如:cos90°=cos(30°+60°)=cos30°•cos60°﹣sin30°•sin60°= × × =0,类似地,可以求得cos15°的值是(结果保留根号).
  • 13. 将一些半径相同的小圆按如图所示的规律摆放:第1上图形有6个小圆,第2个图形有10个小圆,和3个图形有16个小圆,第4个图形有24个小圆,…依此规律,第8个图形的小圆的个数是

  • 14. 在△ABC中,AB=8,∠ABC=30°,AC=5,则BC=

三、解答题

  • 15. 先化简,再求值: ,其中
  • 16. 如图,在△DAE和△ABC中,D是AC上一点,AD=AB,DE∥AB,∠E=∠C.

    求证:AE=BC.

  • 17. 某校倡议八年级学生利用双休日在各自社区参加义务劳动.为了了解同学们参加义务劳动的时间,学校随机调查了部分同学参加义务劳动的时间,用得到的数据绘制成如下不完整的统计图表:

    劳动时间(时)

    频数(人)

    频率

    0.5

    12

    0.12

    1

    30

    0.3

    1.5

    x

    0.4

    2

    18

    y

    合计

    m

    1

    (1) 统计表中的m=,x=,y=
    (2) 请将频数分布直方图补充完整;
    (3) 求被调查同学的平均劳动时间.
  • 18. 为了方便孩子入学,小王家购买了一套学区房,交首付款15万元,剩余部分向银行贷款,贷款及贷款利息按月分期还款,每月还款数相同.计划每月还款y万元,x个月还清贷款,若y是x的反比例函数,其图象如图所示:

    (1) 求y与x的函数解析式;
    (2) 若小王家计划180个月(15年)还清贷款,则每月应还款多少万元?
  • 19. 甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.清你解决下列问题:

    (1) 利用树状图(或列表)的方法表示游戏所有可能出现的结果;
    (2) 求甲、乙两人获胜的概率,并说明游戏是否公平.
  • 20. 如图,防洪大堤的横截面ABGH是梯形,背水坡AB的坡度i=1: (垂直高度AE与水平宽度BE的比),AB=20米,BC=30米,身高为1.7米的小明(AM=1.7米)站在大堤A点(M,A,E三点在同一条直线上),测得电线杆顶端D的仰角∠a=20°.

    (1) 求背水坡AB的坡角;
    (2) 求电线杆CD的高度.(结果精确到个位,参考数据sin20°≈0.3,cos20°≈0.9,tan20°≈0.4, ≈1.7)
  • 21. 列方程(组)及不等式解应用题

    某种型号油、电混合动力汽车,从A地到B地使用纯燃油行驶的费用为76元;从A地到B地使用纯电行驶的费用为26元.已知每行驶1千米用纯燃油行驶的费用比用纯电行驶的费用多0.5元.

    (1) 求用纯电行驶1千米的费用为多少元?
    (2) 若要使从A地到B地油电混合行驶所需的油和电总费用不超过39元,则至少用电行驶多少千米?
  • 22. 已知:如图, AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,联结OD , 作BE∥OD交⊙O于点E, 联结DE并延长交BN于点C.

    (1) 求证:DC是⊙O的切线;
    (2) 若AD=l,BC=4,求直径AB的长.
  • 23. 如图,抛物线y═﹣ x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B的坐标为(3,0),点C的坐标为(0,5).有一宽度为1,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.

    (1) 求抛物线的解析式及点A的坐标;
    (2) 当点M和N都在线段AC上时,连接MF,如果sin∠AMF= ,求点Q的坐标;
    (3) 在矩形的平移过程中,是否存在以点P,Q,M,N为顶点的四边形是平行四边形,若存在,求出点M的坐标;若不存在,请说明理由.

试题篮