湖北省武汉市武昌区武汉市古田路中学2018届数学中考一模试卷4

修改时间:2024-07-13 浏览次数:561 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 已知xy<0,则  化简后为(   )
    A . B . - C . D . -
  • 2. 同时使分式 有意义,又使分式 无意义的x的取值范围是(   )
    A . x≠﹣4且x≠﹣2 B . x=﹣4,或x=2 C . x=﹣4 D . x=2
  • 3. 下列计算正确的是(   )
    A . a•a2=a3 B . (a32=a5 C . a+a2=a3 D . a6÷a2=a3
  • 4.

    “只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据如图提供的信息,捐款金额的众数和中位数分别是(   )

    A . 20,20 B . 30,20 C . 30,30 D . 20,30
  • 5. 若(x﹣2)(x+9)=x2+px+q,那么p、q的值是(   )
    A . p=7  q=18 B . p=7  q=﹣18 C . p=﹣7 q=18 D . p=﹣7  q=﹣18
  • 6. 点P关于x轴的对称点P1的坐标是(4,﹣8),则P点关于y轴的对称点P2的坐标是(   )
    A . (﹣4,﹣8) B . (﹣4,8) C . (4,8) D . (4,﹣8)
  • 7. 如图是某几何体的三视图,则该几何体的全面积等于(   )

    A . 112 B . 136 C . 124 D . 84
  • 8. x1、x2、x3、…x20是20个由1,0,﹣1组成的数,且满足下列两个等式:①x1+x2+x3+…+x20=4,②(x1﹣1)2+(x2﹣1)2+(x3﹣1)2+…+(x20﹣1)2=32,则这列数中1的个数为(   )
    A . 8 B . 10 C . 12 D . 14
  • 9. 若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是(   )
    A . B . C . D .
  • 10. 在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,AB=AE,AC=AD.那么在下列四个结论中:(1)AC⊥BD;(2)BC=DE;(3)∠DBC= ∠DAB;(4)△ABE是正三角形,其中正确的是(   )
    A . (1)和(2) B . (2)和(3) C . (3)和(4) D . (1)和(4)

二、填空题

  • 11. 已知,m、n互为相反数,p、q互为倒数,x的绝对值为2,则代数式: 的值为
  • 12. 已知:a+x2=2015,b+x2=2016,c+x2=2017,且abc=12,则  =
  • 13. 如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为

  • 14. 质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是
  • 15. 如图,四边形ABDC中,AB∥CD,AC=BC=DC=4,AD=6,则BD=

  • 16. 如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1 , 将C1关于点B的中心对称得C2 , C2与x轴交于另一点C,将C2关于点C的中心对称得C3 , 连接C1与C3的顶点,则图中阴影部分的面积为

三、解答题

  • 17. 解方程:                                  
    (1) 2(3x﹣1)=16;
    (2)
    (3)
  • 18. 如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.

    (1) 判断BF与AC的数量关系并说明理由;
    (2) 如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.
  • 19. 某校学生会决定从三明学生会干事中选拔一名干事当学生会主席,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:

    测试项目

    测试成绩/分

    笔试

    75

    80

    90

    面试

    93

    70

    68

    根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示(没有弃权,每位同学只能推荐1人),每得1票记1分.

    (1) 分别计算三人民主评议的得分;
    (2) 根据实际需要,学校将笔试、面试、民主评议三项得分按3:3:4的比例确定个人成绩,三人中谁会当选学生会主席?
  • 20. 某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
    (1) 求A、B型号衣服进价各是多少元?
    (2) 若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
  • 21. 如图,锐角△ABC内接于⊙O,若⊙O的半径为6,sinA= ,求BC的长.

  • 22. 如图,一次函数y=k1x+b与反比例函数y= 的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且SABC=5.

    (1) 求一次函数与反比例函数的解析式;
    (2) 根据所给条件,请直接写出不等式k1x+b> 的解集;
    (3) 若P(p,y1),Q(﹣2,y2)是函数y= 图象上的两点,且y1≥y2 , 求实数p的取值范围.
  • 23. 阅读下列材料,完成任务:

    自相似图形

    定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

    任务:

    (1) 图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为
    (2) 如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为
    (3) 现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

    请从下列A、B两题中任选一条作答.

    A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);

    ②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);

    B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);

    ②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).

  • 24. 如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A,与y轴交于点B.已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.

    (1) 求此抛物线的解析式和直线AB的解析式;
    (2) 如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以 个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?
    (3) 如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.

试题篮