试题 试卷
题型:解答题 题类:模拟题 难易度:普通
安徽省黄山2017-2018学年高三理数一模检测试卷
(Ⅰ)求椭圆的方程;
(Ⅱ)若 分别是椭圆长轴的左、右端点,动点 满足 ,连接 ,交椭圆于点 .证明: 为定值.
如图,F1、F2分别是椭圆的左、右焦点,A和B是以O(O为坐标原点)为圆心,以|OF1|为半径的圆与该椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为( )
已知椭圆C:(a>0,b>0)的短轴长为2 , 且离心率e= .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设F1、F2是椭圆的左、右焦点,过F2的直线与椭圆相交于P、Q两点,求△F1PQ面积的最小值.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设F2(1,0),R(4,0),自点R引直线l交曲线E于Q,N两点,求证:射线F2Q与射线F2N关于直线x=1对称.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P , Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
试题篮