题型:单选题 题类: 难易度:容易
湖北省宜昌市远安县第一高级中学2023-2024学年高二下学期5月月考数学试卷
色差X | 22 | 24 | 25 | 26 | 28 |
色度Y | 17 | 19 | 20 | 23 | 26 |
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及下面一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中 , .
附:对于一组数据(u1 , v1),(u2 , v2),…,(un , vn),其回归直线v=α+βu的斜率和截距的最下二乘估计分别为 , .
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(人) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中 , .
3 | 26.474 | 1.903 | 10 | 209.76 | 14.05 |
(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.
(2)使用参考数据,估计2020年的全国GDP总量.
线性回归方程中斜率和截距的最小二乘法估计公式分别为:
, .
参考数据:
4 | 5 | 6 | 7 | 8 | |
的近似值 | 55 | 148 | 403 | 1097 | 2981 |
试题篮