试题 试卷
题型:解答题 题类:常考题 难易度:普通
天津市和平区2016-2017学年高二下学期理数期末考试试卷
(Ⅰ)若a=﹣2,求证:函数f(x)在(1,+∞)上是增函数;
(Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值;
(Ⅲ)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
(I)设f(x)的导函数为g(x),求g(x)在区间[0,l]上的最小值;
(II)若f(1)=0,且函数f(x)在区间(0,1)内有零点,证明:﹣1<a<2﹣e.
(Ⅰ)若函数f(x)在区间 上有单调递增区间,求实数a的取值范围;
(Ⅱ)证明不等式: .
(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数g(x)= (e为自然对数底数),若在[1,e]上至少存在一点x0 , 使得f(x0)>g(x0)成立,求实数p的取值范围.
(Ⅰ)若 ,求函数 的单调区间;
(Ⅱ)若 在 上恒成立,求正数 的取值范围;
(Ⅲ)证明: .
试题篮