试题 试卷
题型:填空题 题类:常考题 难易度:普通
福建省厦门市2019-2020学年高一下学期数学期末考试试卷
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{ }的前n项和为Tn , 问使Tn> 的最小正整数n是多少?
(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}的前n项和Sn;
(Ⅲ)在条件(Ⅱ)下对任意正整数n,不等式Sn+ ﹣1>(﹣1)n•a恒成立,求实数a的取值范围.
试题篮