试题 试卷
题型:解答题 题类:模拟题 难易度:困难
2017年山东省日照市高考数学三模试卷(理科)
已知椭圆E: 的左、右焦点分别为F1 , F2 , 左、右顶点分别为A,B.以F1F2为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为 .设点P(a,t)(t≠0),连接PA交椭圆于点C,坐标原点为O.
(I)求椭圆E的方程;
(II)若三角形ABC的面积不大于四边形OBPC的面积,求|t|的最小值.
如图,已知椭圆C: 的右顶点为A,离心率为e,且椭圆C过点 ,以AE为直径的圆恰好经过椭圆的右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M、F2N的倾斜角分别为α、β且α+β=π,求证:直线l过定点,并求该定点的坐标.
试题篮