试题 试卷
题型:解答题 题类:模拟题 难易度:困难
2017年甘肃省张掖市高台一中高考数学四模试卷(理科)
(Ⅰ)求椭圆C1 , C2的方程;
(Ⅱ)过F1的直线交椭圆C2于点M,N,求△F2MN面积的最大值.
如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1 , 焦点为F2;以F1 , F2为焦点,离心率e=的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
当m=1时,求椭圆C2的方程;
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过右焦点F且斜率不为0的动直线l与椭圆交于M,N两点,过M作直线x=a2的垂线,垂足为M1 , 求证:直线M1N过定点,并求出定点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若 ,求 的最大值;
(Ⅲ)设 ,直线PA与椭圆M的另一个交点为C , 直线PB与椭圆M的另一个交点为D.若C , D和点 共线,求k.
试题篮