试题 试卷
题型:填空题 题类:真题 难易度:困难
2017年高考理数真题试卷(山东卷)
①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,设函数 ,若在[1,e]上至少存在一点x0 , 使得f(x0)≥g(x0)成立,求实数a的取值范围.
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[ ,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
试题篮