试题
试题
试卷
登录
注册
当前位置:
首页
题型:填空题
题类:常考题
难易度:普通
类比推理
“求方程(
)
x
+(
)
x
=1的解”,有如下解题思路:设f(x)=(
)
x
+(
)
x
, 则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2,类比上述解题思路,不等式x
6
﹣(x+2)>(x+2)
3
﹣x
2
的解集是
.
举一反三
在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为{#blank#}1{#/blank#}.
已知数列{a
n
}满足a
1
=1,a
n
+a
n
+
1
=(
)
n
, S
n
=a
1
+3a
2
+3
2
a
3
+…+3
n
﹣
1
a
n
, 利用类似等比数列的求和方法,可求得4S
n
﹣3
n
a
n
={#blank#}1{#/blank#}.
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+
中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+
=x求得x=
.类比上述过程,则
=( )
平面图形很多可以推广到空间中去,例如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体,直角三角形也可以推广到直角四面体,如果四面体
中棱
两两垂直,那么称四面体
为直角四面体. 请类比直角三角形中的性质给出2个直角四面体中的性质,并给出证明.(请在结论
中选择1个,结论4,5中选择1个,写出它们在直角四面体中的类似结论,并给出证明,多选不得分,其中
表示斜边上的高,
分别表示内切圆与外接圆的半径)
直角三角形
直角四面体
条件
结论1
结论2
结论3
结论4
结论5
为椭圆
(
)上异于左右顶点
、
的任意一点,则直线
与
的斜率之积为定值
.将这个结论类比到双曲线,得出的结论为:
为双曲线
(
)上异于左右顶点
、
的任意一点,则( )
我们知道,在平面几何中,点到直线的距离是点到直线上任一点距离的最小值.那么在立体几何中,一条斜线与平面所成的角是否有类似的结论?如果有请你写出相应的结论并给予证明;如果没有,请举反例.
返回首页
相关试卷
广东省汕头市2024-2025学年高三上学期12月期末教学质量监测数学试题
吉林省白城市第一中学2024-2025学年高二上学期12月期末考试数学试题
2025年1月普通高等学校招生全国统一考试适应性测试(八省联考)数学试题
广东省江门市新会第一中学2024-2025学年高二上学期期末考试数学试题
浙江省宁波市镇海中学2024-2025学年高一上学期期末考试数学试卷
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册