试题 试卷
题型:解答题 题类:常考题 难易度:普通
二面角的平面角及求法2+++++
如图1,在∠A=45°的平行四边形ABCD中,DO垂直平分AB,且AB=2,现将△ADO沿DO折起(如图2),使 .
(Ⅰ)求证:直线AO⊥平面OBCD;
(Ⅱ)求平面AOD与平面ABC所成的角(锐角)的余弦值.
如图,已知四棱锥S﹣ABCD,SB⊥AD,侧面SAD是边长为4的等边三角形,底面ABCD为菱形,侧面SAD与底面ABCD所成的二面角为120°.
(Ⅰ)证明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.
如图,在四棱锥P﹣ABCD中,底面ABCD是菱形, ,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,E是AB中点.
(Ⅰ)求证:直线AM∥平面PNC;
(Ⅱ)求证:直线CD⊥平面PDE;
(III)在AB上是否存在一点G,使得二面角G﹣PD﹣A的大小为 ,若存在,确定G的位置,若不存在,说明理由.
试题篮