题型:单选题 题类:常考题 难易度:普通
线性回归方程
x | 3 | 4 | 5 | 6 | 7 | 8 |
y | 4.0 | 2.5 | ﹣0.5 | 0.5 | ﹣2.0 | ﹣3.0 |
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
表中的数据显示,与y之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算y关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为 = , = ﹣ .
温度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得: , , , ,
,线性回归模型的残差平方和 ,e8.0605≈3167,其中xi , yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用线性回归模型,求y关于x的回归方程 = x+ (精确到0.1);
(Ⅱ)若用非线性回归模型求得y关于x的回归方程为 =0.06e0.2303x , 且相关指数R2=0.9522.
( i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.
(ii)用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1 , y1), (x2 , y2), ...,(xn , yn), 其回归直线 = x+ 的斜率和截距的最小二乘估计为
= − ;相关指数R2= .
时间 (分钟) | 30 | 40 | 70 | 90 | 120 |
数学成绩 | 35 | 48 |
| 82 | 92 |
通过分析,发现数学成绩 与学习数学的时间 具有线性相关关系,其回归方程为 ,则表格中的 的值是{#blank#}1{#/blank#}.
试题篮