试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:常考题
难易度:普通
二面角的平面角及求法3++++++
四棱锥P﹣ABCD中,点P在平面ABCD内的射影H在棱AD上,PA⊥PD,底面ABCD是梯形,BC∥AD,AB⊥AD,且AB=BC=1,AD=2.
(1)、
求证:平面PAB⊥平面PAD;
(2)、
若直线AC与PD所成角为60°,求二面角A﹣PC﹣D的余弦值.
举一反三
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=
AD,
如图,四棱锥P﹣ABCD的底面ABCD为直角梯形,AD‖BC,且
,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为等边三角形,M是棱PC上的一点,设
(M与C不重合).
如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,
∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
如图,四边形
是边长为2的菱形,且
,
平面
,
,
,点
是线段
上任意一点.
若
是互不相同的空间直线,
是不重合的平面,则下列命题中为真命题的是( )
如图,在三棱柱
ABC
-
A
1
B
1
C
1
中,
BB
1
⊥平面
ABC
, ∠
BAC
=90°,
AC
=
AB
=
AA
1
,
E
是
BC
的中点.
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册