试题 试卷
题型:填空题 题类:模拟题 难易度:普通
2017年上海市奉贤区高考数学一模试卷
在直角坐标系xOy中,曲线C的参数方程为 (α为参数),直线l的参数方程为 (t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2 ,θ),其中θ∈( ,π)
(Ⅰ)求θ的值;
(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.
曲线C1的参数方程为 (α为参数),在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.
(Ⅰ)写出C的参数方程;
(Ⅱ)设直线l:3x+y+1=0与C的交点为P1、P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
(Ⅰ)化C1 , C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)若C1上的点P对应的参数为t=﹣ ,Q为C2上的动点,求线段PQ的中点M到直线C3:ρcosθ﹣ ρsinθ=8+2 距离的最小值.
试题篮