试题 试卷
题型:解答题 题类:常考题 难易度:普通
2017年江西省上饶市高考数学一模试卷(理科)
(1)写出直线l的普通方程及圆C 的直角坐标方程;
(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.
(Ⅰ)若圆x2+y2=4在伸缩变换 (λ>0)的作用下变成一个焦点在x轴上,且离心率为 的椭圆,求λ的值;
(Ⅱ)在极坐标系中,已知点A(2,0),点P在曲线C: 上运动,求P、A两点间的距离的最小值.
(Ⅰ)写出C的参数方程;
(Ⅱ)设直线l:3x+y+1=0与C的交点为P1、P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
试题篮