试题 试卷
题型:解答题 题类:常考题 难易度:普通
2017年广东省韶关市高考数学模拟试卷(理科)(1月份)
(Ⅰ)求证:平面AEF⊥平面PAD
(Ⅱ)直线EM与平面PAD所成角的正切值为 ,当F是PC中点时,求二面角C﹣AF﹣E的余弦值.
如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.
(I)证明:平面EAC⊥平面PBD;
(II)若PD∥平面EAC,并且二面角B﹣AE﹣C的大小为45°,求PD:AD的值.
如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 证明:PA⊥BD;
(Ⅱ) 设PD=AD=1,求直线PC与平面ABCD所成角的正切值.
(Ⅰ)求证:MN∥平面PAB;
(Ⅱ)若平面ABCD⊥平面PAD,求直线MN与平面ABCD所成角的正切值.
(Ⅰ)求 与平面 所成角的正弦值.
(Ⅱ)若E为SB的中点,在平面 内存在点N , 使得 平面 ,求N到直线AD , SA的距离.
试题篮