试题 试卷
题型:解答题 题类:常考题 难易度:普通
2015-2016学年浙江省绍兴市嵊州市高三上学期期末数学试卷(理科)
如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.
(1)求证:AC∥平面BEF;
(2)求四面体BDEF的体积.
如图1,已知矩形ABCD中, ,点E是边BC上的点,且 ,DE与AC相交于点H.现将△ACD沿AC折起,如图2,点D的位置记为D',此时 .
(Ⅰ)求证:D'H⊥平面ABC;
(Ⅱ)求二面角H﹣D'E﹣A的余弦值.
已知四棱锥P﹣ABCD中,底面为矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M为PC中点.
(Ⅰ)在图中作出平面ADM与PB的交点N,并指出点N所在位置(不要求给出理由);
(Ⅱ)在线段CD上是否存在一点E,使得直线AE与平面ADM所成角的正弦值为 ,若存在,请说明点E的位置;若不存在,请说明理由;
(Ⅲ)求二面角A﹣MD﹣C的余弦值.
(Ⅰ)证明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一点E,使C1E∥平面A1BD?并证明你的结论.
(Ⅰ)求证: 平面 ;
(Ⅱ)若 是等边三角形, ,求多面体 的体积.
试题篮