试题 试卷
题型:填空题 题类:真题 难易度:普通
2013年春季高考理数真题试卷(上海卷)
(1)两边之和大于第三边;
(2)中位线长等于底边的一半;
(3)三内角平分线交于一点;
可得四面体的对应性质:
(1)任意三个面的面积之和大于第四个面的面积;
(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的;
(3)四面体的六个二面角的平分面交于一点.
其中类比推理结论正确的有( )
∵| • |≤| |•| |,
∴|a1a2+b1b2|≤ • ,
∴(a1a2+b1b2)2≤(a +b )(a +b ),
再类比证明:(a +b +c )(a +b +c )≥(a1a2+b1b2+c1c2)2 .
①向量 ,有| |2= 2;类比复数z,有|z|2=z2
②实数a,b有(a+b)2=a2+2ab+b2;类比向量 , ,有( )2= 2 2
③实数a,b有a2+b2=0,则a=b=0;类比复数z1 , z2 , 有z12+z22=0,则z1=z2=0
其中类比结论正确的命题个数为( )
试题篮