试题 试卷
题型:解答题 题类:常考题 难易度:普通
在边长为2的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是DD1的中点,
(1)求点A到平面A1DE的距离;
(2)求证:CF∥平面A1DE;
(3)求二面角E﹣A1D﹣A的平面角大小的余弦值.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:BC⊥平面PAB;
(Ⅲ)试问在线段AB上是否存在点F,使得过三点 D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)求二面角A﹣PC﹣B的余弦值.
(Ⅰ)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;
(Ⅱ)已知原长方体材料中,AB=2,AD=3,DH=1,根据艺术品加工需要,工程师必须求出该三棱锥的高;甲工程师先求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求三棱锥H﹣ACF的高h.请你根据甲工程师的思路,求该三棱锥的高.
(Ⅰ)证明:EF//平面PCD;
(Ⅱ)求EF与平面PAC所成角的大小.
试题篮