试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图,四棱锥P﹣ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)求证:平面PCE⊥平面PCD;
(Ⅲ)求三棱锥C﹣BEP的体积.
如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:BC1∥平面ACD1 .
(2)当AE=AB时,求三棱锥E﹣ACD1的体积.
将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且 .
(Ⅰ)证明:直线PQ∥平面ADE;
(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.
①若 ,则 ;②若 ,则 ;③若 ,则 且 ;④若 ,则 .
其中真命题的个数是( )
试题篮