试题 试卷
题型:解答题 题类:常考题 难易度:普通
已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于F(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:
(1)∠BAC=∠CAG;
(2)AC2=AE•AF.
如图所示,已知⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若AD=3,AC=2,则cosD的值为( )
如图,PAB、PCD为⊙O的两条割线,AD、BC相交于点E,则图中相似三角形共有( )
图中∠BOD的度数是( )
如图所示,AB与CD是⊙O的直径,AB⊥CD,P是AB延长线上一点,连PC交⊙O于点E,连DE交AB于点F,若AB=2BP=4,则PF={#blank#}1{#/blank#}
如图,A、B是圆O上的两点,且AB的长度小于圆O的直径,直线l与AB垂于点D且与圆O相切于点C.若AB=2,DB=1
(1)求证:CB为∠ACD的角平分线;
(2)求圆O的直径的长度.
试题篮