试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N为线段PB的中点.
(1)证明:NE⊥PD;
(2)求四棱锥B﹣CEPD的体积.
(Ⅰ)当点M为EC中点时,求证:BM∥平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为 时,求棱锥M﹣BDE的体积.
如图,已知四边形ABEF于ABCD分别为正方形和直角梯形,平面ABEF⊥平面ABCD,AB=BC= AD=1,AB⊥AD,BC∥AD,点M是棱ED的中点.
试题篮