试题 试卷
题型:单选题 题类:常考题 难易度:困难
安徽省淮北市2020届理数高三第一次模拟试卷
(I)设f(x)的导函数为g(x),求g(x)在区间[0,l]上的最小值;
(II)若f(1)=0,且函数f(x)在区间(0,1)内有零点,证明:﹣1<a<2﹣e.
(I)求函数f(x)的单调区间;
(II)设g(x)= ,.已知直线y= 是曲线y=f(x)的切线,且函数g(x)在(0,+∞)上是增函数.
(i)求实数a的值;
(ii)求实数c的取值范围.
(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;
(Ⅱ)若存在x0 , 使x0∈[ , ]且f(x0)≤g(x0)成立,求 的取值范围.
试题篮