试题 试卷
题型:解答题 题类:模拟题 难易度:困难
陕西省西安市高新一中2020届高三文数第五次模拟考试试卷
(1)求抛物线C的方程;
(2)过点T(4,0)的直线l交抛物线C于A,B两点,O为坐标原点,求•的值.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求 的最大值及取得最大值时m的值.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M、N是椭圆C上的点,直线OM与ON(O为坐标原点)的斜率之积为﹣ ,若动点P满足 ,试探究,是否存在两个定点F1 , F2 , 使得|PF1|+|PF2|为定值?若存在,求F1 , F2的坐标,若不存在,请说明理由.
(Ⅰ)求椭圆 的离心率;
(Ⅱ)如图, 是圆 的一条直径,若椭圆 经过 两点,求椭圆 的方程.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若△AMN的面积为 ,求直线MN的方程;
(Ⅲ)证明:点P在定直线上.
试题篮