(北师大版)2022-2023学年度第一学期九年级数学1.3 正方形的性质与判定 同步测试

修改时间:2022-07-11 浏览次数:86 类型:同步测试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为(       )

    A . 6 B . 8 C . 10 D . 9
  • 2. 若正方形的边长为4,则它的外接圆的半径为(       )
    A . B . 4 C . D . 2
  • 3. 已知四边形ABCD是平行四边形,下列结论:①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形,其中不正确的有(       )
    A . 1个 B . 2个 C . 3个 D . 4个
  • 4. 如图,在矩形ABCD中,对角线AC,BD交于点O,下列条件:①AC⊥BD,②AB=BC,③∠ACB=45°,④OA=OB.上述条件能使矩形ABCD是正方形的是(        )

    A . ①②③④ B . ①②③ C . ②③④ D . ①③④
  • 5. 如图,将正方形ABCD绕点A顺时针旋转 , 得到正方形 , DB的延长线交EF于点H,则的大小为(       )

    A . 76° B . 97° C . 90° D . 114°
  • 6. 如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC于点M,N,记 的面积为 的面积为 ,若正方形的边长 ,则 的大小为(   )

    A . 6 B . 7 C . 8 D . 9
  • 7. 如图,是半圆O的直径,四边形都是正方形,其中点C,D,E在上,点F,N在半圆上.若 , 则正方形的面积与正方形的面积之和是(    )

    A . 25 B . 50 C . D .
  • 8. 如图,点 是正方形 的边 上一点,把 绕点 顺时针旋转 的位置.若四边形AECF的面积为20,DE=2,则AE的长为(   )

    A . 4 B . C . 6 D .
  • 9. 如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,错误的是(    )

    A . 四边形AEDF是平行四边形 B . 如果∠BAC=90°,那么四边形AEDF是矩形 C . 如果AD平分∠BAC,那么四边形AEDF是菱形 D . 如果AD⊥BC且BD=CD,那么四边形AEDF是正方形
  • 10. 将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.若 ,则 (   )

    A . 3 B . 4 C . D .

二、填空题

  • 11. 一个正方形的对角线长为2,则其面积为
  • 12. 如图,已知正方形ABCD的边长为6,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是 

  • 13. 如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为

  • 14. 添加一个条件,使矩形ABCD是正方形,这个条件可能是 
  • 15. 如图,已知正方形ABCD的边长为2,在BC的延长线上取点B1 , 使∠CB1D=60°,分别过点D,B1作DB1 , BC的垂线,两垂线交于点A1 , 再以A1B1为边向右侧作正方形A1B1C1D1;在BC1的延长线上取点B2 , 使∠C1B2D1=60°,分别过点D1 , B2作D1B2 , BC1的垂线,两垂线交于点A2 , 再以A2B2为边向右侧作正方形A2B2C2D2;……,按此规律继续作下去,则正方形A2022B2022C2022D2022的面积为

三、解答题

  • 16. 如图,在△ABC中,AD⊥BC于点D,∠BAC=45°,BD=2,CD=3,求AD的长

  • 17. 如图,四边形ABCD是矩形,E是BD上的一点,连接AE、CE, ,求证:四边形ABCD是正方形.

  • 18. 如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF和正方形BCMN,联结FN,EC. 求证:FN=EC.

  • 19. 如图,在正方形 中,点 分别在 边上,且 ,联结 .求证:

  • 20. 如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合), ,且 .求证:四边形ABCD是正方形.

  • 21. 如图,将 绕着点A顺时针旋转 得到 ,射线 相交于点C, ,求证:四边形 为正方形.

  • 22. 如图,四边形ABCD是正方形,G是边BC上的任意一点,DE⊥AG于E,BF∥DE,且交AG于点F.求证:AF-BF=EF.

  • 23. 如图,正方形 的对角线 相交于点O,过点B作 的平行线,过点C作 的平行线,它们相交于点E.求证:四边形 是正方形.

试题篮