试题 试卷
题型:单选题 题类:常考题 难易度:普通
古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.则下列符合这一规律的等式是( )
观察右图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为:
如图,有一系列有规律的点,它们分别是以O为顶点,边长为正整数的正方形的顶点,A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…,依此规律,点A20的坐标为( )
根据数表排列的规律,第10行从左向右数第8个数是{#blank#}1{#/blank#}.
试题篮